Structure Cristalline de Sulfates Doubles Hydratés de Wyrouboff

PAR JACQUES BORÈNE ET JEAN PIERRE SOLERY

Laboratoire de Minéralogie-Cristallographie, associé au C.N.R.S., Faculté des Sciences, Tour 16, 9 quai Saint Bernard, Paris 5e, France

(Reçu le 23 septembre 1970, revu le 2 février 1971)

The crystals of CdK₂(SO₄)₂2H₂O and MnK₂(SO₄)₂2H₂O are triclinic, with for the cadmium salt: a = 5.40, b = 6.92, c = 6.98 Å, $\alpha = 100^{\circ}15'$, $\beta = 90^{\circ}$, $\gamma = 114^{\circ}29'$, and for the manganese salt: a = 6.09, b = 7.74, c = 10.87 Å, $\alpha = 109^{\circ}01'$, $\beta = 98^{\circ}27'$, $\gamma = 112^{\circ}12'$. The double sulphates with $1.5H_2O$ are monoclinic, with for the cadmium salt: a = 19.662, b = 9.755, c = 9.693 Å, $\beta = 104^{\circ}22'$, and for the manganese salt: a = 19.50, b = 9.72, c = 9.63 Å, $\beta = 104^{\circ}30'$; the space group is $P2_1/n$. The crystal structure of the monoclinic salt of cadmium has been solved using three-dimensional X-ray diffraction data obtained with a Nonius automatic diffractometer. The structure has been determined using the Kutschabsky method and three-dimensional Fourier synthesis and refined by the least-squares method, giving an R index equal to 0.04. For the isomorphous manganese salt, a least-squares refinement on X-ray diffraction data obtained with a been tained by measuring Weissenberg patterns, gave an R index equal to 0.09.

Introduction

Wyrouboff (1891) a mis en évidence l'existence de sulfates doubles du type $MK_2(SO_4)_2.mH_2O$, où M représente un cation bivalent (Cd^{2+} , Mn^{2+} , Fe^{2+}) et *m* le degré d'hydratation pouvant prendre les valeurs 4, ou bien 2 ou encore 1,5. La structure de la léonite

 $MnK_2(SO_4)_2$. $4H_2O$ qui est monoclinique, groupe C2/m, a été décrite par Schneider (1961).

Le sulfate double $CdK_2(SO_4)_2.2H_2O$ possède d'intéressantes propriétés mécaniques, qui se manifestent par un maclage et un démaclage mécanique très facile. On peut suivre, en lumière polarisée, la propagation de bandes d'une grande finesse, correspondant aux émergences des plans de macle; inversement, on peut démacler le cristal par compression parallèle aux plans de macle.

L'objet de cet article sera de présenter les mailles cristallines des sulfates doubles dihydratés de cadmium et de manganèse, et les structures des sulfates doubles $CdK_2(SO_4)_2.1,5H_2O$ et MnK $_2(SO_4)_2.1,5H_2O$.

Préparation et données cristallines

Les différents sulfates doubles cristallisent dans une enceinte thermostatée par évaporation lente, sous la pression atmosphérique normale, à partir de la solution aqueuse des sulfates simples en proportions équimoléculaires, dans des domaines de températures donnés dans le Tableau 1.

 Tableau 1. Températures de cristallisation des sulfates doubles

	Température
Sulfates	de cristallisation
$CdK_2(SO_4)_2.2H_2O$	16-40°C
$MnK_2(SO_4)_2.2H_2O$	45-52
$CdK_{2}(SO_{4})_{2}.1,5H_{2}O$	> 25
$MnK_{2}(SO_{4})_{2}.1,5H_{2}O$	> 50

Les deux sulfates doubles dihydratés possèdent la symétrie triclinique, tandis que ceux à 1,5 molécules d'eau sont monocliniques.

Des diagrammes de cristal tournant et de Weissenberg, en utilisant le rayonnement $K\alpha$ du cuivre, et, pour le sel de cadmium à 1,5 molécules d'eau, des mesures à l'aide d'un diffractomètre automatique à compteur Nonius utilisant le rayonnement $K\alpha$ du molybdène, nous ont fourni les paramètres cristallins. Pour les sels monocliniques, l'absence systématique des réflexions: h+l=2n+1 pour h0l et k=2n+1 pour 0k0, a conduit au groupe de recouvrement $P2_1/n$.

Les paramètres cristallins, les densités et le nombre de groupes formulaires par maille sont donnés dans le Tableau 2. L'ambiguite sur le groupe spatial des sels tricliniques n'a pas pu être levée par le test de piézoélectricité, qui est négatif pour le sel de manganèse. Pour le sel de cadmium, qui se macle mécaniquement, ce test n'a pas de sens.

La similitude des formules chimiques, des paramètres cristallographiques, les faciès semblables, l'identité du groupe de symétrie, montrent l'existence d'un isomorphisme entre les sels monocliniques de cadmium et de manganèse, qui sera confirmé par la similitude des projections de Patterson.

Détermination de la structure des sels monocliniques

Les 1890 intensités des réflexions recueilliés à l'aide d'un diffractomètre utilisant le rayonnement $K\alpha$ du molybdène ont été corrigées des facteurs de Lorentz et de polarisation. Aucune correction d'absorption n'a été effectuée. L'étude des projections de Patterson sur le plan x0y, puis des projections généralisées de Patterson h1/ et h2l, nous ont fourni la position des atomes de cadmium en projection.

L'utilisation de la méthode de l'atome lourd remplaçable dans une série isomorphe, sur la strate équa-

a $5,40 \pm 0,02$ Å $6,09 \pm 0,02$ Å $19,662 \pm 0,003$ Å $19,50 \pm 0.02$ Åb $6,92 \pm 0,02$ $7,74 \pm 0,02$ $9,755 \pm 0,005$ $9,72 \pm 0.02$,01 Å ,02 02
b 6.92 ± 0.02 7,74 ± 0.02 9,755 ± 0.005 9,72 ± 0.02	,02 02
	02
c $6,98 \pm 0,02$ $10,87 \pm 0,02$ $9,693 \pm 0,005$ $9,63 \pm 0$,
α 100° 15' ± 10' 109° 01' ± 10' 90° 90°	
β 90° ± 10′ 98°27′± 10′ 104°22′± 5′ 104°30′± 1	0′
$\gamma = 114^{\circ}29' \pm 10' = 112^{\circ}12' \pm 10' = 90^{\circ} = 90^{\circ}$	
<i>d</i> 2,92 2,63 3,05 2,82	
Groupe	
d'espace $P1$ ou $P\overline{1}$ P_1 ou $P\overline{1}$ $P2_1/n$ $P2_1/n$	

Tableau 2. Paramètres cristallins des sulfates doubles

toriale h0l du sel de cadmium et du sel isomorphe de manganèse, ainsi que des séries différence de Fourier, nous ont donné les coordonnées x et z des atomes de potassium, de soufre et de dix oxygènes.

Le nombre important d'atomes indépendants (29) et la petitesse relative des paramètres directs b et c, rendent l'interprétation des projections de Patterson sur 0kl et hk0 très difficile.

Nous avons donc cherché d'autres méthodes pour déterminer les coordonnées y de tous les atomes, y compris celles des atomes de cadmium. La première méthode que nous avons utilisée est celle de Kutschabsky (1965). L'expression du facteur de structure, dans le cas d'un groupe de symétrie centré, si l'on connaît les coordonnées x_i et z_i de tous les atomes pour une strate h1l, peut s'écrire sous la forme:

$$F(H) = \sum a_j \cos 2\pi y_j + b_j \sin 2\pi y_j$$

où les a_i et b_i sont calculables à partir des facteurs de diffusion atomique, des coordonnées connues et du groupe d'espace. On est en présence d'un système d'équations linéaires dont on ne connaît pas le signe du premier membre. Pour le résoudre, il suffit de choisir d'une part deux facterus de structure non nuls, l'un avec h+l=2n, l'autre avec h+l=2n+1, auxquels on attribue un signe arbitraire définissant ainsi l'origine et le sens de l'axe des y; et, d'autre part, les autres facteurs de structure nuls non systématiquement. Ce calcul a été programmé en FORTRAN IV sur ordinateur CDC 6600 et IBM 360, on obtient séparément les valeurs de sin $2\pi y_i$ et cos $2\pi y_i$; la relation, sin² $2\pi y_i$ + $\cos^2 \pi y_i = 1$, permet de vérifier l'homogénéité des deux résultats.

Le programme nous a fourni la valeur des coordonnées v pour les atomes de cadmium, de potassium et de soufre. Le R cristallographique était égal à 0,30.

Puis des calculs de sections de densité électronique à trois dimensions, à l'aide du programme MONITO (Zelwer, Derango & Tsoucaris, 1965) nous ont donné la position de tous les atomes d'oxygène dans l'espace.

Un affinement avec programme de moindre carré SAPHIR, dérivé de ORFLS (Busing, Martin & Levy, 1962) portant sur les coordonnées x, y, z et les facteurs d'agitation thermique isotrope a abaissé la valeur du R cristallographique à 0,06.

L'affinement portant sur les facteurs d'agitation thermique anisotrope donne R = 0.043 (Tableau 3).

Pour le sel monoclinique de manganèse, les intensités des réflexions de Bragg recueillies sur une chambre de Weissenberg utilisant le rayonnement $K\alpha$ du cuivre, ont été corrigées des facteurs de Lorentz et de polarisation. La remise à l'échelle absolue des intensités a été faite en corrigeant de l'erreur systématique (Rimsky, 1959).

Un affinement par moindre carré, portant sur les valeurs des coordonnées x, y, z obtenues avec le sel de cadmium, les facteurs de température étant supposés isotropes, a abaissé le R cristallographique à 0,09 (Tableau 4).

Fableau 3. Coordonnées x, y, z et facteurs de températures
B isotropes et β_{ij}
anisotropes pour CdK ₂ (SO ₄), 1,5H ₂ O

	x	У	z	В
Cd(1)	0,7308	0,0064	0,2839	1.29
Cd(2)	0.6030	0.4377	0.3798	1.35
K(1)	0.0547	0.7003	0.6554	2.0
K(2)	0.2664	0.5353	0.2134	1.6
K(3)	0,4220	0,2323	0.3812	2.1
K(4)	0,1266	0,4164	0,3826	1,8
S(Ì)	0,4442	0,6135	0,3061	1,2
S(2)	0,2865	0,2890	0,5457	1,0
S(3)	0,2249	0,7094	0,4996	0,9
S(4)	0,5559	0,1408	0,2042	1,1
O(1)	0,355	0,344	0,617	1,9
O(2)	0,651	0,431	0,172	1,4
O(3)	0,449	0,758	0,686	1,7
O(4)	0,267	0,327	0,396	0,8
O(5)	0,417	0,527	0,404	1,4
O(6)	0,474	0,739	0,376	1,9
O(7)	0,231	0,856	0,523	2,2
O(8)	0,500	0,537	0,255	1,2
O(9)	0,387	0,644	0,185	1,2
O(10)	0,294	0,648	0,503	2,4
O(11)	0,492	0,063	0,164	2,0
O(12)	0,114	0,459	0,082	1,9
O(13)	0,306	0,148	0,390	1,2
O(14)	0,291	0,138	0,555	1,2
O(15)	0,322	0,186	0,140	1,6
O(16)	0,070	0,293	0,579	1,5
O(17)	0,232	0,337	0,620	1,3
O(18)	0,422	0,394	0,018	2,3
O(19)	0,114	0,450	0,767	2,0

N.B. Les atomes O(2), O(12), O(18) sont les atomes d'oxygènes appartenant aux molécules d'eau.

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Cd(1)	0.00058	0.00318	0.00450	-0.00007	0.00037	-0.00006
Cd(2)	0.00081	0.00337	0.00381	-0.00016	0.00052	0.00011
K(I)	0.0012	0.0036	0.0069	-0.0001	0.0006	0.0003
$\mathbf{K}(2)$	0.0009	0.0053	0.0042	- 0.0000	0.0006	0.0010
K(3)	0.0008	0.0055	0.0066	-0.0004	0.0003	-0.0011
K(4)	0.0005	0.0043	0.0065	0.0003	0.0004	0.0009
S(1)	0.0004	0.0024	0.0039	0.0001	0.0003	0.0001
S(2)	0.0004	0.0026	0.0030	0.0001	0.0001	0.0001
S(3)	0.0005	0.0021	0.0027	0.0000	0.0000	0.0002
S(4)	0.0005	0.0024	0.0038	0.0000	0.0003	-0.0008
O(1)	0,0003	0.002	0,0087	-0.0013	0.0003	0.0003
O(2)	0.0005	0.001	0.0052	-0.0009	0.0010	-0.0014
O(3)	0.0014	0.002	0.0076	-0.0010	0.0014	-0.0016
O(4)	0.0008	0.000	0.0026	-0.0005	0.0000	0.0011
O(5)	0,0017	0.000	0.0045	-0.0001	0.0010	0.0020
O(6)	0,0010	0,002	0,0079	0,0000	0,0009	-0,0018
O (7)	0,0019	0,004	0,0064	-0,0005	0,0012	-0,0009
O(8)	0,0002	0,002	0,0046	0,0005	0,0005	0,0004
O(9)	0,0002	0,006	0,0034	0,0003	0,0000	0,0010
O(10)	0,0007	0,008	0,0096	0,0017	0,0011	0,004
O(11)	0,0005	0,002	0,0090	-0,0003	-0,0002	-0,0017
O(12)	0,0005	0,006	0,0062	-0.0012	0,0013	-0,0015
O(13)	0,0009	0,002	0,0054	-0,0002	0,0012	-0,0022
O(14)	0,0010	0,002	0,0038	0,0013	0,0005	0,0003
O(15)	0,0008	0,005	0,0039	0,0010	-0,0003	0,0003
O(16)	0,0011	0,003	0,0043	0,0005	0,0009	-0,0002
O(17)	0,0007	0,001	0,0045	-0,0002	0,0006	-0,0012
O(18)	0,0013	0,007	0,0072	0,0002	0,0000	-0,0036
O(19)	0.0004	0.001	0.0098	-0.0007	0.0002	-0.0021

Tableau 3 (suite)

Tableau 4. Coordonnées x,y,z et facteurs de températures B isotropes pour MnK₂(SO₄)₂.1,5H₂O

	x	У	z	В
Mn(1)	0,7299	0,0082	0.2827	1.32
Mn(2)	0,6034	0,4397	0,3799	1.34
K(1)	0,0547	0,700	0.6562	2.2
K(2)	0,2663	0,538	0,2140	1,6
K(3)	0,4230	0,232	0,3803	2,1
K(4)	0,1271	0,412	0,3825	1.7
S(1)	0,4451	0,615	0,3070	1.1
S(2)	0,2863	0,287	0,5450	1,0
S(3)	0,2253	0,708	0,5014	0,9
S(4)	0,5568	0,146	0,2045	0,9
O(1)	0,354	0,348	0,616	2,4
O(2)	0,653	0,435	0,176	1,3
O(3)	0,447	0,748	0,686	2,4
O(4)	0,267	0,326	0,398	0,9
O(5)	0,417	0,526	0,408	1,9
O(6)	0,475	0,746	0,374	2,7
O(7)	0,232	0,854	0,524	1,9
O(8)	0,499	0,540	0,257	1,1
O(9)	0,388	0,647	0,188	1,0
O(10)	0,296	0,655	0,507	2,0
O(11)	0,492	0,058	0,167	2,4
O(12)	0,114	0,460	0,077	2,0
O(13)	0,304	0,150	0,888	1,3
O(14)	0,289	0,133	0,555	1,3
O(15)	0,322	0,186	0,139	1,8
O(16)	0,069	0,289	0,576	1,7
O(17)	0,233	0,334	0,620	1,3
O(18)	0,422	0,391	0,019	2,9
O(19)	0,116	0,448	0,765	1,8

Description de la structure

Tous les atomes de la maille se trouvent en positions générales. Les quatre atomes indépendants de soufre sont entourés par des tétradèdres d'oxygène, les distances S-O étant comprises entre les valeurs 1,43 et 1,51 Å. Les deux atomes de cadmium indépendants sont entourés par des octaèdres d'oxygène, l'un de ces oxygènes, O(2), appartenant à une molécule d'eau commune aux deux octaèdres, les cinq autres oxygènes étant communs aux ions sulfates. La distance Cd-O est comprise entre 2,20 et 2,29 Å, elle est plus longue (2,4 Å) pour l'oxygène de la molécule d'eau.

Trois des atomes indépendants de potassium ont un entourage à neuf oxygènes (2,7 < d < 3,28), le quatrième ayant huit voisins à des distances variant de 2,7 à 3,22 Å.

Les distances S-O des atomes d'oxygène non liés aux atomes de cadmium, ne sont pas différentes de façon significative de celles des atomes d'oxygène liés au cadmium. Les couples d'octaèdres entourant les atomes de cadmium sont liés entre eux par des ions sulfates, l'ensemble formant des couches parallèles aux plans directs {101}, dans ces couches, viennent s'insérer deux atomes de potassium et une molécule d'eau.

Entre ces couches sont placés deus atomes de potassium [K(2), K(4)] assurant la liaison d'une couche à l'autre; l'ensemble formant un enchaînement tridimensionnel. Les trois atomes d'oxygène [O(2), O(12), O(18)] qui ne font partie d'aucun des ions sulfates, sont les atomes d'oxygène des molécules (Fig. 1). On constate que les distance des liaisons Mn–O sont plus courtes que les distances des liaisons Cd–O, ce qui explique le volume moins important de la maille du sulfate double de manganèse par rapport au sulfate double de cadmium. L'entourage des atomes de potassium et de soufre est le même dans les deux sulfates (Tableaux 5 et 6). Parmi les distances des atomes d'oxygène des molécules d'eau, aux autres atomes d'oxygène qui ne font pas partie d'un même polyèdre de coordination autour

Tableau 5. Distances des liaisons Cd-O, K-O, S-O et angles des liaiso	ns
$O-Cd-O, O-S-O pour CdK_2(SO_4)_2.1,5H_2O$	

	$d(\text{\AA})$	σ		<i>d</i> (Å)	σ
S(1) - O(5)	1,47	0,03	S(2) - O(1)	1,45	0,03
S(1)—O(6)	1,45	0,03	S(2) - O(4)	1,44	0,03
S(1) - O(8)	1,51	0,03	S(2)O(14)	1,48	0,03
S(1)—O(9)	1,43	0,03	S(2)O(17)	1,51	0,03
S(3)—O(7)	1,44	0,03	S(4)O(3)	1,47	0,03
S(3)—O(10)	1,48	0,03	S(4) - O(11)	1,44	0,03
S(3)—O(15)	1,48	0,03	S(4) - O(16)	1,46	0,03
S(3) = O(13)	1,45	0,03	S(4) = O(19)	1,46	0,03
Cd(1) = O(2)	2,37	0,02	Cd(2) = O(1)	2,20	0,02
Cd(1) = O(7)	2,27	0,02	Cd(2)=O(2)	2,42	0,02
Cd(1)=O(13) Cd(1)=O(14)	2,24	0,02	Cd(2)=O(5)	2,10	0.02
Cd(1)=O(17)	2,22	0.02	Cd(2) = O(8)	2.29	0.02
Cd(1) = O(19)	2,30	0,02	Cd(2) - O(10)	2,22	0,02
K(1) - O(1)	2,82	0,03	K(2) - O(4)	2,69	0,03
K(1)O(6)	3,02	0,03	K(2)O'(4)	2,99	0,03
K(1)O(8)	3,02	0,03	K(2)-O(5)	3,06	0,03
K(1)O(11)	3,28	0,03	K(2)O(7)	2,89	0,03
K(1) - O'(11)	2,86	0,03	K(2) = O(9)	2,68	0,03
K(1) = O(13)	2,92	0,03	K(2) = O(10)	2,92	0,03
K(1) = O(16) K(1) = O(18)	2,89	0,03	K(2) = O(12) K(2) = O(14)	2 74	0,03
K(1) = O(10) K(1) = O(10)	2,04	0,03	K(2) = O(14) K(2) = O(15)	2 91	0.03
K(3) = O(1)	3.11	0.03	K(4) - O(4)	2.87	0,03
K(3) - O(3)	2.77	0.03	K(4)O(6)	3,27	0,03
K(3)O(4)	3,22	0,03	K(4)O(9)	2,73	0,03
K(3) - O(5)	2,88	0,03	K(4)—O(11)	2,67	0,03
K(3)O(6)	3,24	0,03	K(4)O(12)	2,88	0,03
K(3)O(11)	2,81	0,03	K(4)O(13)	3,19	0,03
K(3)O(12)	2,70	0,03	K(4)O(15)	2,85	0,03
K(3)O(15)	2,68	0,03	K(4)O(16)	2,71	0,03
			K(4) - O(17)	2,79	0,03
					_
		σ			σ
O(5) - S(1) - O(6)	10925	20	O(1) - S(2) - O(4)	1113/	20
O(5) - S(1) - O(8)	11035	20	O(1) = S(2) = O(14)	10/13	20
O(5) - S(1) - O(9)	10902	20	O(1) = S(2) = O(17) O(4) = S(2) = O(14)	10756	20
O(6) = -S(1) = -O(8)	10907	20	O(4) = -S(2) = -O(17)	11122	20
O(0) = S(1) = O(9) O(8) = S(1) = O(9)	10830	20	O(14) - S(2) - O(17)	10902	20
O(7) = S(3) = O(10)	11142	20	O(3) - S(4) - O(11)	10956	20
O(7) - S(3) - O(13)	10135	20	O(3) - S(4) - O(16)	11129	20
O(7) - S(3) - O(15)	10717	20	O(3) - S(4) - O(19)	10710	20
O(10)-S(3)-O(13)	10920	20	O(11)-S(4)-O(16)	11014	20
O(10) - S(3) - O(15)	10843	20	O(11)-S(4)-O(19)	10919	20
O(13) - S(3) - O(15)	11804	20	O(16) - S(4) - O(19)	10836	20
O(2)Cd(1)-O(7)	8532	20	O(1) - Cd(2) - O(2)	16259	20
O(2) - Cd(1) - O(13)	9232	20	O(1) = Cd(2) = O(3)	10338	20
O(2) - Cd(1) - O(14) O(2) - Cd(1) - O(17)	9130	20	O(1) = Cd(2) = O(3)	8317	20
O(2) = Cd(1) = O(17)	17017	20	O(1) = Cd(2) = O(10)	9321	20
O(2) = Cd(1) = O(13)	17341	20	O(2) - Cd(2) - O(3)	8921	20
O(7) - Cd(1) - O(14)	8251	$\tilde{20}$	O(2) - Cd(2) - O(5)	16629	20
O(7) - Cd(1) - O(17)	9708	20	O(2) - Cd(2) - O(8)	9240	20
O(7) - Cd(1) - O(19)	9408	20	O(2)Cd(2)-O(10)	8534	20
O(13)-Cd(1)-O(14)	9113	20	O(3)—Cd(2)-O(5)	10227	20
O(13)-Cd(1)-O(17)	8906	20	O(3) - Cd(2) - O(8)	8600	20
O(13)-Cd(1)-O(19)	8645	20	O(3) - Cd(2) - O(10)	9703	20
O(14)-Cd(1)-O(17)	17000	20	O(5) - Cd(2) - O(8)	9441	20
O(14) - Cd(1) - O(19)	/825	20	O(3) = Cd(2) = O(10)	8028 17627	20
O(17) - Cd(1) - O(19)	9057	20	O(8) - Ca(2) - O(10)	1/02/	20

des cadmium et des potassium, nous avons trouvé six distances H_2O-O comprises entre 2,7 et 3,04 Å, qui correspondent à des liaisons hydrogène. Il n'a pas été

possible de mettre ces atomes d'hydrogène en évidence sur les densités électroniques différences. Les angles $O-(H_2O)-O$ correspondant ont été calculés; on

Tableau 6.	Distances	des liaison:	s Mn–O,	K-0,	S–O et	angles	des
liaiso	ns O–Mn–	О, О– S–О	pour Mi	$1K_2(SO)$	₄) ₂ .1,5H	I ₂ O	

	<i>d</i> (Å)	σ		$d(\text{\AA})$	σ
Mn(1) - O(2)	2,32	0,03	Mn(2)–O(1)	2,22	0,03
Mn(1)–O(7)	2,26	0,03	Mn(2)–O(2)	2,39	0,03
Mn(1)–O(13)	2,23	0,03	Mn(2)–O(3)	2,10	0,03
Mn(1)-O(14)	2,18	0,03	Mn(2)–O(5)	2,20	0,03
Mn(1) - O(17)	2,20	0,03	Mn(2)–O(8)	2,29	0,03
Mn(1)-O(19)	2,22	0,03	Mn(2)–O(10)	2,20	0,03
S(1)—O(5)	1,50	0,03	S(2) - O(1)	1,46	0,03
S(1)—O(6)	1,48	0,03	S(2) - O(4)	1,43	0,03
S(1)O(8)	1,46	0,03	S(2) = O(14)	1,49	0,03
S(1) = O(9)	1,42	0,03	S(2) = O(17)	1,47	0,03
S(3) = O(7)	1,44	0,03	S(4) = O(3)	1,49	0,03
S(3) = -O(10)	1,45	0,03	S(4) = O(11)	1,30	0,03
S(3) = O(13)	1,45	0,03	S(4) = O(10) S(4) = O(10)	1,45	0,03
S(3) = O(13)	2.84	0,03	K(2) = O(13)	3 02	0,03
K(1) = O(1) K(1) = O(6)	2,04	0,03	K(2) = O(4) K(2) = O'(4)	2 71	0,03
K(1) = O(0) K(1) = O(8)	2,99	0,03	K(2) = O(5)	3.06	0,03
K(1) = O(0) K(1) = O(11)	3,25	0,03	K(2) = O(3)	2.92	0.03
K(1) = O'(11)	2,82	0.03	K(2) = O(9)	2.66	0.03
K(1) = O(13)	2.92	0.03	K(2) - O(10)	2.96	0.03
K(1) - O(16)	2.85	0.03	K(2) - O(12)	3,03	0,03
K(1) - O(18)	2,65	0.03	K(2)O(14)	2,71	0,03
K(1)O(19)	2,81	0,03	K(2)O(15)	2,87	0,03
K(3) - O(1)	3,12	0,03	K(4) - O(4)	2,82	0,03
K(3) - O(3)	2,76	0,03	K(4)O(6)	3,20	0,03
K(3) - O(4)	3,22	0,03	K(4)—O(9)	2,66	0,03
K(3)O(5)	2,87	0,03	K(4)O(11)	2,67	0,03
K(3)—O(6)	2,69	0,03	K(4)O(12)	2,93	0,03
K(3)O(11)	3,19	0,03	K(4) - O(13)	3,25	0,03
K(3)—O(12)	2,79	0,03	K(4)O(15)	2,87	0,03
K(3) - O(15)	2,68	0,03	K(4) = O(16)	2,65	0,03
			K(4) = O(17)	2,78	0,03
		a			σ
	9700	20	$O(1) = M_{\pi}(2) O(2)$	7017	20
O(2) = Mn(1) - O(7)	0056	20	O(1) = Mn(2) = O(2) O(1) = Mn(2) = O(3)	16341	20
O(2) = -Mn(1) - O(13)	9030	20	O(1) = Mn(2) = O(3) O(1) = Mn(2) = O(5)	8954	20
O(2) = Mn(1) - O(14)	9120	20	O(1) = Mn(2) = O(3)	8326	20
O(2) = Mn(1) = O(17)	17116	20	O(1) - Mn(2) - O(10)	9535	20
O(7) - Mn(1) - O(13)	17234	20	O(2) - Mn(2) - O(3)	8938	20
O(7) - Mn(1) - O(14)	8217	20	O(2) - Mn(2) - O(5)	16507	20
O(7) - Mn(1) - O(17)	9619	20	O(2) - Mn(2) - O(8)	9400	20
O(7) - Mn(1) - O(19)	9157	20	O(2) - Mn(2) - O(10)	8432	20
O(13) - Mn(1) - O(14)	9102	20	O(3) - Mn(2) - O(5)	10320	20
O(13) - Mn(1) - O(17)	9047	20	O(3) - Mn(2) - O(8)	8558	20
O(13) - Mn(1) - O(19)	8804	20	O(3) - Mn(2) - O(10)	9442	20
O(14) - Mn(1) - O(17)	17104	20	O(5) - Mn(2) - O(8)	9409	20
O(14) Mn(1)O(19)	8002	20	O(5) - Mn(2) - O(10)	8709	20
O(17) - Mn(1) - O(19)	9119	20	O(8) - Mn(2) - O(10)	17823	20
O(5) - S(1) - O(6)	11228	20	O(1) - S(2) - O(4)	10952	20
O(5) - S(1) - O(8)	11002	20	O(1) = S(2) = O(14)	10922	20
O(5) - S(1) - O(9)	10809	20	O(1) - S(2) - O(17) O(4) - S(2) - O(14)	10822	20
O(0) - S(1) - O(0)	10838	20	O(4) = S(2) = O(14)	11101	20
O(0) - S(1) - O(9)	10/30	20	O(4) = S(2) = O(17)	10740	20
O(0) = -S(1) = -O(9)	10941	20	O(3) = S(4) = O(11)	11151	20
O(7) = S(3) = O(10)	10736	20	O(3) - S(4) - O(16)	11409	20
O(7) = S(3) = O(15)	10728	20	O(3) - S(4) - O(19)	10849	$\tilde{20}$
O(10) - S(3) - O(13)	11236	20	O(11) - S(4) - O(16)	10853	20
O(10) - S(3) - O(15)	11039	$\tilde{20}$	O(11) - S(4) - O(19)	10543	20
O(13) - S(3) - O(15)	11034	20	O(16) - S(4) - O(19)	10700	20

trouve respectivement 97, 106 et $120^{\circ} (\pm 1^{\circ})$ (Tableau 7).

Tableau 7. Longueurs des liaisons hydrogène pour CdK₂(SO₄)₂. 1,5H₂O

Atomes d'oxygène des molécules d'eau	Autres atomes d'oxygène	Distance	
O(2)	O(16)	2,7 Å	
	O(18)	2,65	
O(12)	O(19)	3,04	
	O(6)	2,85	
O(18)	O(7)	2,96	
	O(8)	2,78	
O(2) O(12) O(18)	O(16) O(18) O(19) O(6) O(7) O(8)	2,7 Å 2,65 3,04 2,85 2,96 2,78	

Analyse de l'agitation thermique

Le calcul des déplacements atomiques moyens dus à l'agitation thermique supposé anisotrope (root-meansquare, Tableau 8) et le dessin de la projection de la structure calculée par le programme ORTEP de Johnson (1965) (Fig. 2) montrent que les atomes de soufre et de cadmium et, à un degré moindre, ceux de potassium, ont une agitation thermique presque isotrope. Au contraire, les atomes d'oxygène sont beaucoup plus agités dans la direction perpendiculaire au plan des liaisons O-Cd et O-S qu'ils assurent.

Fig. 1. Projection de la structure de $CdK_2(SO_4)_2$. 1,5H₂O sur le plan xOz.

Fig. 2. Projection de la structure de $CdK_2(SO_4)_2$. 1,5H₂O sur le plan *xOz* obtenue avec *ORTEP*.

i

Tableau 8. Modules et orientations des éllipsoides ther-miques, et module des r.m.s. dans la direction definie par les atomes (S–O, puis O–S), pour $CdK_2(SO_4)_2.1,5H_2O$

Tableau 8 (suite)

les ato	, er mou mes (S–	O, puis O	1.3. auns n 1–S), pour	CdK ₂ (S	$O_{4})_{2}.1,$	5H ₂ O		<i>i</i> 1	0 079		X 33	Y 87	<i>Z</i>
	Atome	R.m.s.	R.m.s.	Ang prir	gles des icipaux	axes avec_	O(10)	2 3	0,250 0,162	0,174	122 80	39 50	123 46
Cd(1)	1 2 3	0,103 0,142 0,124	0,128	<i>X</i> 13 82 100	94 93 5	2 82 172 92	O(11)	1 2 3	0,078 0,215 0,120	0,159	52 135 111	77 87 13	46 46 101
Cd(2)	1 2 3	0,116 0,132 0,130	0,131	33 114 111	112 134 52	59 67 41	O(12)	1 2 3	0,125 0,208 0,150	0,155	33 76 60	105 153 69	57 116 135
K(1)	1 2 3	0,097 0,176 0,141	0,159	18 107 95	93 66 25	104 153 67	O(13)	1 2 3	0,056 0,175 0,116	0,123	77 159 75	121 69 39	31 71 66
K(2)	1 2 3	0,130 0,177 0,149	0,142	68 154 102	98 90 8	22 69 83	O(14)	1 2 3	0,055 0,169 0,132	0,123	53 84 38	95 172 97	142 90 52
K(3)	1 2 3	0,119 0,184 0,160	0,163	31 119 98	81 58 34	70 40 124	O(15)	1 2 3	0,087 0,186 0,148	0,142	46 72 50	67 145 115	65 56 136
K(4)	1 2 3	0,124 0,169 0,136	0,150	50 140 94	145 113 63	67 76 27	O(16)	1 2 3	0,109 0,158 0,142	0,138	50 91 40	123 146 84	49 120 125
S(1)	1 2 3	0,087 0,133 0,110	0,123	21 110 96	96 84 8	110 159 86	O(17)	1 2 3	0,073 0,150 0,108	0,128	91 173 63	70 69 30	21 93 110
S(3)	1 2 3	0,093 0,124 0,101	0,107	46 109 49	89 85 150	102 162 102	O(18)	1 2 3	0,129 0,233 0,158	0,171	46 156 68	81 84 135	51 67 48
S(2)	1 2 3	0,088 0,119 0,114	0,107	19 106 100	89 70 20	102 156 70	O(19)	1 2 3	0,026 0,218 0,116	0,159	54 142 100	83 79 13	140 128 77
S(4)	1 2 3	0,099 0,140 0,100	0,118	56 144 100	115 100 27	141 116 117		Atome	1 A	tome 2	R (relative a	.m.s. à l'atom	e 1)
O(1)	1 2 3	0,101 0,200 0,149	0,155	40 126 105	96 98 10	50 41 80		S(1) S(1) S(1)		O(5) O(6) O(8)	0 0 0	,120 ,115 ,099	
O(2)	1 2 3	0,101 0,166 0,102	0,133	51 136 73	92 51 39	40 59 113		S(1) S(2) S(2) S(2)		O(9) O(1) O(4) O(14)	0 0 0 0	,112 ,099 ,115 ,113	
O(3)	1 2 3	0,073 0,198 0,151	0,147	70 147 65	84 46 45	23 78 109		S(2) S(3) S(3)		O(17) O(7) O(10)	0 0 0	,104 ,104 ,108	
O(4)	1 2 3	0,090 0,150 0,104	0,101	74 119 34	111 136 127	24 98 113		S(3) S(4) S(4) S(4)		O(15) O(3) O(11) O(16)	0 0 0 0	,100 ,105 ,101 ,138	
O(5)	1 2 3	0,100 0,176 0,151	0,133	81 70 22	113 156 82	23 113 90		S(4) O(5) O(6)		O(19) S(1) S(1) S(1)	0	,115 ,058 ,109	
O(6)	1 2 3	0,093 0,195 0,137	0,155	104 165 93	70 83 21	23 102 108		O(8) O(9) O(1) O(4)		S(1) S(1) S(2) S(2)	0 0 0	,073 ,073 ,059 ,092	
O(7)	1 2 3	0,135 0,194 0,164	0,167	81 124 36	74 23 74	21 101 108		O(14) O(17) O(7)		S(2) S(2) S(3)	0. 0. 0.	,107 ,104 ,138	
O(8)	1 2 3	0,045 0,145 0,123	0,123	19 109 89	100 70 22	107 155 74		O(10) O(13) O(15) O(3)		S(3) S(3) S(3) S(4)	0, 0, 0, 0,	,090 ,088 ,105 ,128	
O(9)	1 2 3	0,059 0,176 0,138	0,123	35 125 90	71 26 73	99 104 17		O(11) O(16) O(19)		S(4) S(4) S(4)	0, 0, 0,	087 119 041	

Conclusion

Le sulfate double $CdK_2(SO_4)_2$. $2H_2O$ possède une macle mécanique; par compression perpendiculairement au plan (001) du cristal, on suit en lumière polarisée la propagation de bandes fines, correspondant aux émergences des plans de macle. Ces cristaux se maclent par simple contact. Les deux sulfates doubles tricliniques dihydratés stables à température ordinaire ne sont pas isomorphes. Cependant, en chauffant une lame de $MnK_2(SO_4)_2$. $2H_2O$ vers 70°C, on voit le cristal se macler, avec formation de bandes semblables à celles que l'on rencontre toujours avec $CdK_2(SO_4)_2 \cdot 2H_2O$. La transformation est très brutale; si le cristal n'est pas mince, il se divise parallèlement aux bandes en un nombre de lamelles. Cette nouvelle phase est stable jusqu'à 120°C, et possède la macle observée pour le sulfate de cadmium dihydraté, il existe donc un isomorphisme entre ces deux corps.

Nous avons essayé de rattacher les deux structures déterminées à celle du sulfate triclinique de cadmium, mais aucun rapport simple n'a pu être mis en évidence, les mailles n'ayant pas des dimensions comparables. Dans le cas de $CdK_2(SO_4)_2$. $2H_2O$, il n'y a qu'un atome de cadmium par maille, il se trouve donc soit sur l'une des séries de entre de symétrie dans l'hypothèse d'une structure centrosymétrique, ou en un point quelconque

dans l'autre cas; dans les deux alternatives, les distances Cd-Cd sont totalement différentes de celles du sulfate double monoclinique.

Il semble probable que la liaison Cd(1)–O(2)–Cd(2) du sel monoclinique se coupe au niveau de la molécule d'eau O(2), pour permettre l'adjonction de la demimolécule d'eau supplémentaire.

Les donnéées actuelles n'étant pas suffisantes, l'interprétation structurale de la formation de la macle mécanique ne pourra être trouvée que par la résolution de la structure.

La liste des facteurs de structure peut été obtenue au Centre de Documentation du C.N.R.S., 15 quai Anatole France, Paris 7e, sous le numéro A.O. 489.

Références

BUSING, W. R., MARTIN, K.O. & LEVY, H. A. (1959). Acta Cryst. 12, 410.

- JOHNSON, C. K. (1965). ORTEP. Report ORNL 3794, Oak Ridge National Laboratory, Tennessee.
- KUTSCHABSKY, L. & HOHNE, E. (1965). Acta Cryst. 19, 747.
- RIMSKY, A. (1959). Bull. Soc. fr. Minér. Crist. 82, 370.
- SCHNEIDER, V. M. (1961). Acta Cryst. 14, 784.
- WYROUBOFF. (1891). Bull. Soc. fr. Minér. Crist. 14, 233. ZELWER, C., DERANGO, C. & TSOUCARIS, G. (1965). Colloque
- de l'Association française de Cristallographie, p. 155.

Acta Cryst. (1972). B28, 2694

The Crystal Structure of (+)_D-Tris(ethylenediamine)cobalt(III) Nitrate*

BY DAVID WITIAK, JON C. CLARDY AND DON S. MARTIN JR

Institute for Atomic Research and Department of Chemistry, Iowa State University, Ames, Iowa 50010, U.S.A.

(Received 5 March 1971)

The crystal structure of D-[Co(en)₃] (NO₃)₃ has been determined by three-dimensional single-crystal X-ray analysis. The compound crystallizes in the orthorhombic space group $P2_12_12_1$. The lattice constants are $a = 14.570 \pm 0.017$, $b = 12.607 \pm 0.016$, and $c = 8.756 \pm 0.003$ Å with four formula units in the unit cell. Atoms of Co, N, C, and O were refined anisotropically. The derived structure was refined by least-squares methods to an unweighted R index of 8.4%. The coordination about the central cobalt atom is essentially octahedral with an average Co-N distance of 1.964 ± 0.008 Å.

Introduction

The crystal structures and absolute configurations of $(+)_D$ -2[Co(en)₃]Cl₃. 3H₂O (Nakatsu, Saito & Kuroya, 1956), $(+)_D$ -2[Co(en)₃]Cl₃. NaCl. 6H₂O (Nakatsu, Shiro Saito & Kuroya, 1957), $(+)_D$ -[Co(en)₃]Br₃. H₂O (Nakatsu, 1962) and $(+)_D$ -[Co(en)₃]Cl₃. H₂O (Iwata, Nakatsu & Saito, 1969), where en = ethylenediamine, have been determined. The space group of the chloride and bro-

mide complexes is tetragonal, with space group $P4_12_12$ or $P4_32_12$. The present work was undertaken to aid in explaining the anomalous ΔH^* of this salt observed in the study of solid state racemization, performed in this laboratory.

Experimental

A sample of the compound was first prepared by Werner (1912) and yellow crystals were obtained by recrystallization from a water solution. Microscopic examination revealed that the crystals were either triangular prisms or needles with sharply defined faces.

^{*} Work was performed in the Ames Laboratory of the U.S. Atomic Energy Commission. Contribution No. 2941.